MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C41300 Brass

Nickel 693 belongs to the nickel alloys classification, while C41300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.0 to 44
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 440
230 to 370
Tensile Strength: Ultimate (UTS), MPa 660
300 to 630
Tensile Strength: Yield (Proof), MPa 310
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1350
1040
Melting Onset (Solidus), °C 1310
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 9.9
2.7
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
69 to 1440
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
9.6 to 20
Strength to Weight: Bending, points 21
11 to 19
Thermal Diffusivity, mm2/s 2.3
40
Thermal Shock Resistance, points 19
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
89 to 93
Iron (Fe), % 2.5 to 6.0
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5