MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C48600 Brass

Nickel 693 belongs to the nickel alloys classification, while C48600 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Shear Strength, MPa 440
180 to 230
Tensile Strength: Ultimate (UTS), MPa 660
280 to 360
Tensile Strength: Yield (Proof), MPa 310
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1350
900
Melting Onset (Solidus), °C 1310
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 9.1
110
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 9.9
2.8
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 320
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 250
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23
9.5 to 12
Strength to Weight: Bending, points 21
12 to 14
Thermal Diffusivity, mm2/s 2.3
36
Thermal Shock Resistance, points 19
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
0
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 2.5 to 6.0
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4