MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C82600 Copper

Nickel 693 belongs to the nickel alloys classification, while C82600 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 660
570 to 1140
Tensile Strength: Yield (Proof), MPa 310
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 330
240
Maximum Temperature: Mechanical, °C 1010
300
Melting Completion (Liquidus), °C 1350
950
Melting Onset (Solidus), °C 1310
860
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 9.9
11
Embodied Energy, MJ/kg 140
180
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 250
430 to 4690
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23
18 to 36
Strength to Weight: Bending, points 21
17 to 28
Thermal Diffusivity, mm2/s 2.3
37
Thermal Shock Resistance, points 19
19 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0 to 0.5
94.9 to 97.2
Iron (Fe), % 2.5 to 6.0
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0 to 0.2
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0.2 to 0.35
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 1.0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5