MakeItFrom.com
Menu (ESC)

Nickel 80A vs. AWS BNi-5a

Both nickel 80A and AWS BNi-5a are nickel alloys. They have a moderately high 92% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is AWS BNi-5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 1040
480

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Melting Completion (Liquidus), °C 1360
1150
Melting Onset (Solidus), °C 1310
1070
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 9.8
9.0
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 280
260

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 35
17
Strength to Weight: Bending, points 27
17
Thermal Shock Resistance, points 31
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.5 to 1.8
0 to 0.050
Boron (B), % 0
1.0 to 1.5
Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 18 to 21
18.5 to 19.5
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 0 to 3.0
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
70.1 to 73.5
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
7.0 to 7.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 1.8 to 2.7
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5