MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C82000 Copper

Nickel 80A belongs to the nickel alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 22
8.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
45
Tensile Strength: Ultimate (UTS), MPa 1040
350 to 690
Tensile Strength: Yield (Proof), MPa 710
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1360
1090
Melting Onset (Solidus), °C 1310
970
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
46

Otherwise Unclassified Properties

Base Metal Price, % relative 55
60
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 9.8
5.0
Embodied Energy, MJ/kg 140
77
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
80 to 1120
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
11 to 22
Strength to Weight: Bending, points 27
12 to 20
Thermal Diffusivity, mm2/s 2.9
76
Thermal Shock Resistance, points 31
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.5 to 1.8
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 0 to 3.0
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
0 to 0.2
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5