MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C86700 Bronze

Nickel 80A belongs to the nickel alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
41
Tensile Strength: Ultimate (UTS), MPa 1040
630
Tensile Strength: Yield (Proof), MPa 710
250

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1360
880
Melting Onset (Solidus), °C 1310
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 11
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
17
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
19

Otherwise Unclassified Properties

Base Metal Price, % relative 55
23
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 9.8
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 280
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
290
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 35
22
Strength to Weight: Bending, points 27
21
Thermal Diffusivity, mm2/s 2.9
28
Thermal Shock Resistance, points 31
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.5 to 1.8
1.0 to 3.0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 0 to 3.0
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.0
1.0 to 3.5
Nickel (Ni), % 69.4 to 79.7
0 to 1.0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0