MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C87610 Bronze

Nickel 80A belongs to the nickel alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 1040
350
Tensile Strength: Yield (Proof), MPa 710
140

Thermal Properties

Latent Heat of Fusion, J/g 320
270
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1360
970
Melting Onset (Solidus), °C 1310
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 11
28
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 9.8
2.6
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 280
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
62
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
88
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 35
11
Strength to Weight: Bending, points 27
13
Thermal Diffusivity, mm2/s 2.9
8.1
Thermal Shock Resistance, points 31
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.5 to 1.8
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
90 to 94
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.25
Nickel (Ni), % 69.4 to 79.7
0
Silicon (Si), % 0 to 1.0
3.0 to 5.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5