MakeItFrom.com
Menu (ESC)

Nickel 80A vs. C92700 Bronze

Nickel 80A belongs to the nickel alloys classification, while C92700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 80A and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
9.1
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 1040
290
Tensile Strength: Yield (Proof), MPa 710
150

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1360
980
Melting Onset (Solidus), °C 1310
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 11
47
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 55
35
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 9.8
3.6
Embodied Energy, MJ/kg 140
58
Embodied Water, L/kg 280
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
22
Resilience: Unit (Modulus of Resilience), kJ/m3 1300
110
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 35
9.1
Strength to Weight: Bending, points 27
11
Thermal Diffusivity, mm2/s 2.9
15
Thermal Shock Resistance, points 31
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.5 to 1.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 0 to 3.0
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 69.4 to 79.7
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.7