MakeItFrom.com
Menu (ESC)

Nickel 825 vs. C65100 Bronze

Nickel 825 belongs to the nickel alloys classification, while C65100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 825 and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
2.4 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
200 to 350
Tensile Strength: Ultimate (UTS), MPa 650
280 to 560
Tensile Strength: Yield (Proof), MPa 260
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1060
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 11
57
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 41
30
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 7.2
2.6
Embodied Energy, MJ/kg 100
41
Embodied Water, L/kg 230
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
39 to 820
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.7 to 18
Strength to Weight: Bending, points 20
11 to 17
Thermal Diffusivity, mm2/s 2.9
16
Thermal Shock Resistance, points 17
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
94.5 to 99.2
Iron (Fe), % 22 to 37.9
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0
Silicon (Si), % 0 to 0.050
0.8 to 2.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5