MakeItFrom.com
Menu (ESC)

Nickel 825 vs. WE54A Magnesium

Nickel 825 belongs to the nickel alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 825 and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
44
Elongation at Break, % 34
4.3 to 5.6
Fatigue Strength, MPa 190
98 to 130
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
17
Shear Strength, MPa 430
150 to 170
Tensile Strength: Ultimate (UTS), MPa 650
270 to 300
Tensile Strength: Yield (Proof), MPa 260
180

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 460
960
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 14
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.7
47

Otherwise Unclassified Properties

Base Metal Price, % relative 41
34
Density, g/cm3 8.2
1.9
Embodied Carbon, kg CO2/kg material 7.2
29
Embodied Energy, MJ/kg 100
260
Embodied Water, L/kg 230
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 170
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
62
Strength to Weight: Axial, points 22
39 to 43
Strength to Weight: Bending, points 20
49 to 51
Thermal Diffusivity, mm2/s 2.9
28
Thermal Shock Resistance, points 17
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.0
0 to 0.030
Iron (Fe), % 22 to 37.9
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 0 to 1.0
0 to 0.030
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 46
0 to 0.0050
Silicon (Si), % 0 to 0.050
0 to 0.010
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.6 to 1.2
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3