MakeItFrom.com
Menu (ESC)

Nickel 890 vs. ASTM Grade HF Steel

Nickel 890 belongs to the nickel alloys classification, while ASTM grade HF steel belongs to the iron alloys. They have 58% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is ASTM grade HF steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
29
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 590
550
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 1000
1000
Melting Completion (Liquidus), °C 1390
1410
Melting Onset (Solidus), °C 1340
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 47
17
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 250
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0.2 to 0.4
Chromium (Cr), % 23.5 to 28.5
18 to 23
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 17.3 to 33.9
60 to 73.8
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.5
Nickel (Ni), % 40 to 45
8.0 to 12
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 2.0
0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.040
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0