MakeItFrom.com
Menu (ESC)

Nickel 890 vs. EN 1.4630 Stainless Steel

Nickel 890 belongs to the nickel alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. They have 43% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
23
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 400
300
Tensile Strength: Ultimate (UTS), MPa 590
480
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 1000
800
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 47
9.5
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.5
Embodied Energy, MJ/kg 120
36
Embodied Water, L/kg 250
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
92
Resilience: Unit (Modulus of Resilience), kJ/m3 140
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 19
18
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0 to 1.5
Carbon (C), % 0.060 to 0.14
0 to 0.030
Chromium (Cr), % 23.5 to 28.5
13 to 16
Copper (Cu), % 0 to 0.75
0 to 0.5
Iron (Fe), % 17.3 to 33.9
77.1 to 86.7
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.5
Nickel (Ni), % 40 to 45
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 1.0 to 2.0
0.2 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.050
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0.15 to 0.8