MakeItFrom.com
Menu (ESC)

Nickel 890 vs. EN 1.8865 Steel

Nickel 890 belongs to the nickel alloys classification, while EN 1.8865 steel belongs to the iron alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
19
Fatigue Strength, MPa 180
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 400
410
Tensile Strength: Ultimate (UTS), MPa 590
660
Tensile Strength: Yield (Proof), MPa 230
500

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1000
420
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 47
3.2
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 120
24
Embodied Water, L/kg 250
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 19
21
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0.050 to 0.6
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.060 to 0.14
0 to 0.18
Chromium (Cr), % 23.5 to 28.5
0 to 1.0
Copper (Cu), % 0 to 0.75
0 to 0.3
Iron (Fe), % 17.3 to 33.9
93.6 to 100
Manganese (Mn), % 0 to 1.5
0 to 1.7
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.7
Nickel (Ni), % 40 to 45
0 to 1.5
Niobium (Nb), % 0.2 to 1.0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 2.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.0050
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15