MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C28000 Muntz Metal

Nickel 890 belongs to the nickel alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 39
10 to 45
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 400
230 to 330
Tensile Strength: Ultimate (UTS), MPa 590
330 to 610
Tensile Strength: Yield (Proof), MPa 230
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1340
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 47
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20
11 to 21
Strength to Weight: Bending, points 19
13 to 20
Thermal Shock Resistance, points 15
11 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
59 to 63
Iron (Fe), % 17.3 to 33.9
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0
Niobium (Nb), % 0.2 to 1.0
0
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3