MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C51900 Bronze

Nickel 890 belongs to the nickel alloys classification, while C51900 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
14 to 29
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
42
Shear Strength, MPa 400
320 to 370
Tensile Strength: Ultimate (UTS), MPa 590
380 to 620
Tensile Strength: Yield (Proof), MPa 230
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
1040
Melting Onset (Solidus), °C 1340
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 47
33
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 120
51
Embodied Water, L/kg 250
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
680 to 1450
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
12 to 19
Strength to Weight: Bending, points 19
13 to 18
Thermal Shock Resistance, points 15
14 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
91.7 to 95
Iron (Fe), % 17.3 to 33.9
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5