MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C64800 Bronze

Nickel 890 belongs to the nickel alloys classification, while C64800 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 39
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Shear Strength, MPa 400
380
Tensile Strength: Ultimate (UTS), MPa 590
640
Tensile Strength: Yield (Proof), MPa 230
630

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1340
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 47
33
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 120
43
Embodied Water, L/kg 250
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
51
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 15
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0 to 0.75
92.4 to 98.8
Iron (Fe), % 17.3 to 33.9
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0 to 0.5
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 1.0 to 2.0
0.2 to 1.0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5