MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C66200 Brass

Nickel 890 belongs to the nickel alloys classification, while C66200 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
8.0 to 15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 400
270 to 300
Tensile Strength: Ultimate (UTS), MPa 590
450 to 520
Tensile Strength: Yield (Proof), MPa 230
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
1070
Melting Onset (Solidus), °C 1340
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 47
29
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 120
43
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 140
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 19
15 to 16
Thermal Shock Resistance, points 15
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.050 to 0.6
0
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
86.6 to 91
Iron (Fe), % 17.3 to 33.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
0.3 to 1.0
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5