MakeItFrom.com
Menu (ESC)

Nickel 890 vs. C94700 Bronze

Nickel 890 belongs to the nickel alloys classification, while C94700 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 890 and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
7.9 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 590
350 to 590
Tensile Strength: Yield (Proof), MPa 230
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1340
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 47
34
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 120
56
Embodied Water, L/kg 250
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110 to 700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
11 to 19
Strength to Weight: Bending, points 19
13 to 18
Thermal Shock Resistance, points 15
12 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.050 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0.060 to 0.14
0
Chromium (Cr), % 23.5 to 28.5
0
Copper (Cu), % 0 to 0.75
85 to 90
Iron (Fe), % 17.3 to 33.9
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 40 to 45
4.5 to 6.0
Niobium (Nb), % 0.2 to 1.0
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 1.0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tantalum (Ta), % 0.1 to 0.6
0
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3