MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. CC493K Bronze

QE22A magnesium belongs to the magnesium alloys classification, while CC493K bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
74
Elastic (Young's, Tensile) Modulus, GPa 44
100
Elongation at Break, % 2.4
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
39
Tensile Strength: Ultimate (UTS), MPa 250
270
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 340
180
Maximum Temperature: Mechanical, °C 250
160
Melting Completion (Liquidus), °C 640
960
Melting Onset (Solidus), °C 570
880
Specific Heat Capacity, J/kg-K 970
360
Thermal Conductivity, W/m-K 110
61
Thermal Expansion, µm/m-K 27
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Density, g/cm3 2.0
8.9
Embodied Carbon, kg CO2/kg material 27
3.3
Embodied Energy, MJ/kg 220
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
33
Resilience: Unit (Modulus of Resilience), kJ/m3 400
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 60
18
Strength to Weight: Axial, points 36
8.6
Strength to Weight: Bending, points 46
11
Thermal Diffusivity, mm2/s 59
19
Thermal Shock Resistance, points 15
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
79 to 86
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Magnesium (Mg), % 93.1 to 95.8
0
Nickel (Ni), % 0 to 0.010
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 2.0 to 3.0
0
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Unspecified Rare Earths, % 1.8 to 2.5
0
Zinc (Zn), % 0
2.0 to 5.0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0