MakeItFrom.com
Menu (ESC)

QE22A Magnesium vs. C53800 Bronze

QE22A magnesium belongs to the magnesium alloys classification, while C53800 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is QE22A magnesium and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
110
Elongation at Break, % 2.4
2.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
40
Shear Strength, MPa 150
470
Tensile Strength: Ultimate (UTS), MPa 250
830
Tensile Strength: Yield (Proof), MPa 190
660

Thermal Properties

Latent Heat of Fusion, J/g 340
190
Maximum Temperature: Mechanical, °C 250
160
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 570
800
Specific Heat Capacity, J/kg-K 970
360
Thermal Conductivity, W/m-K 110
61
Thermal Expansion, µm/m-K 27
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.3

Otherwise Unclassified Properties

Density, g/cm3 2.0
8.7
Embodied Carbon, kg CO2/kg material 27
3.9
Embodied Energy, MJ/kg 220
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
18
Resilience: Unit (Modulus of Resilience), kJ/m3 400
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 60
18
Strength to Weight: Axial, points 36
26
Strength to Weight: Bending, points 46
22
Thermal Diffusivity, mm2/s 59
19
Thermal Shock Resistance, points 15
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 0 to 0.1
85.1 to 86.5
Iron (Fe), % 0
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Magnesium (Mg), % 93.1 to 95.8
0
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0 to 0.010
0 to 0.030
Silver (Ag), % 2.0 to 3.0
0
Tin (Sn), % 0
13.1 to 13.9
Unspecified Rare Earths, % 1.8 to 2.5
0
Zinc (Zn), % 0
0 to 0.12
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.2