MakeItFrom.com
Menu (ESC)

H01 C15500 Copper vs. H01 C26800 Brass

Both H01 C15500 copper and H01 C26800 brass are copper alloys. Both are furnished in the H01 (quarter hard) temper. They have 66% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H01 C15500 copper and the bottom bar is H01 C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 27
22
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Shear Strength, MPa 200
230
Tensile Strength: Ultimate (UTS), MPa 310
370
Tensile Strength: Yield (Proof), MPa 260
190

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
930
Melting Onset (Solidus), °C 1080
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 350
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
27
Electrical Conductivity: Equal Weight (Specific), % IACS 91
30

Otherwise Unclassified Properties

Base Metal Price, % relative 33
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 360
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
68
Resilience: Unit (Modulus of Resilience), kJ/m3 290
170
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.6
13
Strength to Weight: Bending, points 11
14
Thermal Diffusivity, mm2/s 100
37
Thermal Shock Resistance, points 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.75 to 99.853
64 to 68.5
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.080 to 0.13
0
Phosphorus (P), % 0.040 to 0.080
0
Silver (Ag), % 0.027 to 0.1
0
Zinc (Zn), % 0
31 to 36
Residuals, % 0 to 0.2
0 to 0.3