MakeItFrom.com
Menu (ESC)

H01 C42600 Brass vs. H01 C70600 Copper-nickel

Both H01 C42600 brass and H01 C70600 copper-nickel are copper alloys. Both are furnished in the H01 (quarter hard) temper. They have 88% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is H01 C42600 brass and the bottom bar is H01 C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
46
Tensile Strength: Ultimate (UTS), MPa 470
410

Thermal Properties

Latent Heat of Fusion, J/g 200
220
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1030
1150
Melting Onset (Solidus), °C 1010
1100
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 110
44
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 26
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 48
51
Embodied Water, L/kg 340
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 430
16 to 290
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 15
13
Strength to Weight: Bending, points 15
14
Thermal Diffusivity, mm2/s 33
13
Thermal Shock Resistance, points 17
14

Alloy Composition

Copper (Cu), % 87 to 90
84.7 to 90
Iron (Fe), % 0.050 to 0.2
1.0 to 1.8
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.050 to 0.2
9.0 to 11
Phosphorus (P), % 0.020 to 0.050
0
Tin (Sn), % 2.5 to 4.0
0
Zinc (Zn), % 5.3 to 10.4
0 to 1.0
Residuals, % 0
0 to 0.5