Reactor Grade Zirconium vs. AISI 301L Stainless Steel
Reactor grade zirconium belongs to the otherwise unclassified metals classification, while AISI 301L stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is reactor grade zirconium and the bottom bar is AISI 301L stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 98 | |
200 |
Elongation at Break, % | 21 | |
22 to 50 |
Poisson's Ratio | 0.34 | |
0.28 |
Shear Modulus, GPa | 37 | |
77 |
Tensile Strength: Ultimate (UTS), MPa | 330 | |
620 to 1040 |
Tensile Strength: Yield (Proof), MPa | 160 | |
250 to 790 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Specific Heat Capacity, J/kg-K | 270 | |
480 |
Thermal Conductivity, W/m-K | 22 | |
15 |
Thermal Expansion, µm/m-K | 5.9 | |
16 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.5 | |
7.8 |
Embodied Water, L/kg | 280 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 56 | |
210 to 300 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 130 | |
160 to 1580 |
Stiffness to Weight: Axial, points | 8.4 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 14 | |
22 to 37 |
Strength to Weight: Bending, points | 16 | |
21 to 29 |
Thermal Diffusivity, mm2/s | 13 | |
4.1 |
Thermal Shock Resistance, points | 41 | |
14 to 24 |
Alloy Composition
Carbon (C), % | 0 | |
0 to 0.030 |
Chromium (Cr), % | 0 | |
16 to 18 |
Iron (Fe), % | 0 | |
70.7 to 78 |
Manganese (Mn), % | 0 | |
0 to 2.0 |
Nickel (Ni), % | 0 | |
6.0 to 8.0 |
Nitrogen (N), % | 0 | |
0 to 0.2 |
Phosphorus (P), % | 0 | |
0 to 0.045 |
Silicon (Si), % | 0 | |
0 to 1.0 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Zirconium (Zr), % | 99.7 to 100 | |
0 |
Residuals, % | 0 to 0.27 | |
0 |