MakeItFrom.com
Menu (ESC)

Z13004 Zinc vs. C19700 Copper

Z13004 zinc belongs to the zinc alloys classification, while C19700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is Z13004 zinc and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
120
Elongation at Break, % 30
2.4 to 13
Poisson's Ratio 0.25
0.34
Shear Modulus, GPa 35
43
Tensile Strength: Ultimate (UTS), MPa 93
400 to 530
Tensile Strength: Yield (Proof), MPa 76
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 110
210
Maximum Temperature: Mechanical, °C 90
200
Melting Completion (Liquidus), °C 410
1090
Melting Onset (Solidus), °C 390
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
250
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 37
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 6.6
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 53
41
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 33
460 to 1160
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 3.9
12 to 16
Strength to Weight: Bending, points 7.0
14 to 16
Thermal Diffusivity, mm2/s 44
73
Thermal Shock Resistance, points 2.9
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.0020
0
Cadmium (Cd), % 0 to 0.0030
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.0030
97.4 to 99.59
Iron (Fe), % 0 to 0.0030
0.3 to 1.2
Lead (Pb), % 0 to 0.0030
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Tin (Sn), % 0 to 0.0010
0 to 0.2
Zinc (Zn), % 99.985 to 100
0 to 0.2
Residuals, % 0
0 to 0.2