MakeItFrom.com
Menu (ESC)

SAE-AISI 1012 Steel vs. C28500 Muntz Metal

SAE-AISI 1012 steel belongs to the iron alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1012 steel and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21 to 31
20
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
40
Shear Strength, MPa 230 to 250
320
Tensile Strength: Ultimate (UTS), MPa 360 to 400
520
Tensile Strength: Yield (Proof), MPa 200 to 330
380

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
110
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 53
100
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
33

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 45
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 93
94
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 300
700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 13 to 14
18
Strength to Weight: Bending, points 14 to 15
18
Thermal Diffusivity, mm2/s 14
33
Thermal Shock Resistance, points 11 to 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.1 to 0.15
0
Copper (Cu), % 0
57 to 59
Iron (Fe), % 99.16 to 99.6
0 to 0.35
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
39.5 to 43
Residuals, % 0
0 to 0.9