MakeItFrom.com
Menu (ESC)

SAE-AISI 1017 Steel vs. CR018A Copper

SAE-AISI 1017 steel belongs to the iron alloys classification, while CR018A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1017 steel and the bottom bar is CR018A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20 to 30
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 420 to 460
220
Tensile Strength: Yield (Proof), MPa 220 to 390
130

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 53
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
100
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
33
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 45
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88 to 110
29
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 400
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 15 to 16
6.8
Strength to Weight: Bending, points 16 to 17
9.0
Thermal Diffusivity, mm2/s 14
110
Thermal Shock Resistance, points 13 to 14
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0.15 to 0.2
0
Copper (Cu), % 0
99.914 to 99.94
Iron (Fe), % 99.11 to 99.55
0
Manganese (Mn), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silver (Ag), % 0
0.060 to 0.080
Sulfur (S), % 0 to 0.050
0