MakeItFrom.com
Menu (ESC)

SAE-AISI 1043 Steel vs. Grade Ti-Pd18 Titanium

SAE-AISI 1043 steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1043 steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 200
320
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 18
17
Fatigue Strength, MPa 230 to 390
350
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 650 to 710
710
Tensile Strength: Yield (Proof), MPa 350 to 600
540

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 51
8.2
Thermal Expansion, µm/m-K 12
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
41
Embodied Energy, MJ/kg 18
670
Embodied Water, L/kg 46
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 980
1380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23 to 25
44
Strength to Weight: Bending, points 21 to 22
39
Thermal Diffusivity, mm2/s 14
3.3
Thermal Shock Resistance, points 21 to 22
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.4 to 0.47
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 98.9
0 to 0.25
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4