MakeItFrom.com
Menu (ESC)

SAE-AISI 1049 Steel vs. C82200 Copper

SAE-AISI 1049 steel belongs to the iron alloys classification, while C82200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1049 steel and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 17
8.0 to 20
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 680 to 750
390 to 660
Tensile Strength: Yield (Proof), MPa 370 to 640
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
180
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
45
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
46

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
55
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
4.8
Embodied Energy, MJ/kg 18
74
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75 to 99
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 370 to 1090
180 to 1130
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24 to 27
12 to 20
Strength to Weight: Bending, points 22 to 23
13 to 19
Thermal Diffusivity, mm2/s 14
53
Thermal Shock Resistance, points 22 to 24
14 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.35 to 0.8
Carbon (C), % 0.46 to 0.53
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
97.4 to 98.7
Iron (Fe), % 98.5 to 98.9
0
Manganese (Mn), % 0.6 to 0.9
0
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 0.5