MakeItFrom.com
Menu (ESC)

SAE-AISI 1055 Steel vs. SAE-AISI 1330 Steel

Both SAE-AISI 1055 steel and SAE-AISI 1330 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1055 steel and the bottom bar is SAE-AISI 1330 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 14
11 to 23
Fatigue Strength, MPa 260 to 390
210 to 380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 440 to 450
330 to 430
Tensile Strength: Ultimate (UTS), MPa 730 to 750
520 to 710
Tensile Strength: Yield (Proof), MPa 400 to 630
290 to 610

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 85
76 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1070
230 to 990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
19 to 25
Strength to Weight: Bending, points 23
18 to 23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 23 to 24
17 to 23

Alloy Composition

Carbon (C), % 0.5 to 0.6
0.28 to 0.33
Iron (Fe), % 98.4 to 98.9
97.3 to 98
Manganese (Mn), % 0.6 to 0.9
1.6 to 1.9
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0 to 0.050
0 to 0.040