MakeItFrom.com
Menu (ESC)

SAE-AISI 1055 Steel vs. C28000 Muntz Metal

SAE-AISI 1055 steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1055 steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 14
10 to 45
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Shear Strength, MPa 440 to 450
230 to 330
Tensile Strength: Ultimate (UTS), MPa 730 to 750
330 to 610
Tensile Strength: Yield (Proof), MPa 400 to 630
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
28
Electrical Conductivity: Equal Weight (Specific), % IACS 12
31

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
46
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80 to 85
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1070
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
11 to 21
Strength to Weight: Bending, points 23
13 to 20
Thermal Diffusivity, mm2/s 14
40
Thermal Shock Resistance, points 23 to 24
11 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.5 to 0.6
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 98.4 to 98.9
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3