MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. EN 1.0420 Cast Steel

Both SAE-AISI 1060 steel and EN 1.0420 cast steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is EN 1.0420 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 13
28
Fatigue Strength, MPa 260 to 340
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 620 to 740
460
Tensile Strength: Yield (Proof), MPa 400 to 540
220

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
53
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.7
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 46
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
110
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 26
16
Strength to Weight: Bending, points 21 to 23
17
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 20 to 24
14

Alloy Composition

Carbon (C), % 0.55 to 0.65
0
Iron (Fe), % 98.4 to 98.9
99.935 to 100
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Sulfur (S), % 0 to 0.050
0 to 0.030