MakeItFrom.com
Menu (ESC)

SAE-AISI 1060 Steel vs. EN 1.4600 Stainless Steel

Both SAE-AISI 1060 steel and EN 1.4600 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1060 steel and the bottom bar is EN 1.4600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 10 to 13
23
Fatigue Strength, MPa 260 to 340
290
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Shear Strength, MPa 370 to 450
360
Tensile Strength: Ultimate (UTS), MPa 620 to 740
580
Tensile Strength: Yield (Proof), MPa 400 to 540
430

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
730
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
27
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 19
28
Embodied Water, L/kg 46
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58 to 82
120
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 790
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 26
21
Strength to Weight: Bending, points 21 to 23
20
Thermal Diffusivity, mm2/s 14
7.3
Thermal Shock Resistance, points 20 to 24
21

Alloy Composition

Carbon (C), % 0.55 to 0.65
0 to 0.030
Chromium (Cr), % 0
11 to 13
Iron (Fe), % 98.4 to 98.9
82 to 87.7
Manganese (Mn), % 0.6 to 0.9
1.0 to 2.5
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0
0 to 0.35