MakeItFrom.com
Menu (ESC)

SAE-AISI 1070 Steel vs. C95520 Bronze

SAE-AISI 1070 steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1070 steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
280
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10 to 13
2.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 640 to 760
970
Tensile Strength: Yield (Proof), MPa 420 to 560
530

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
240
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 50
40
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
11
Electrical Conductivity: Equal Weight (Specific), % IACS 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.6
Embodied Energy, MJ/kg 19
58
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 86
21
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 850
1210
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23 to 27
33
Strength to Weight: Bending, points 21 to 24
27
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 21 to 25
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0.65 to 0.75
0
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 98.3 to 98.8
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 0.9
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5