MakeItFrom.com
Menu (ESC)

SAE-AISI 1084 Steel vs. C19800 Copper

SAE-AISI 1084 steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1084 steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
9.0 to 12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 470 to 550
260 to 330
Tensile Strength: Ultimate (UTS), MPa 780 to 930
430 to 550
Tensile Strength: Yield (Proof), MPa 510 to 600
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1410
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
260
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
62

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 89
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 700 to 960
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 28 to 33
14 to 17
Strength to Weight: Bending, points 24 to 27
14 to 17
Thermal Diffusivity, mm2/s 14
75
Thermal Shock Resistance, points 25 to 30
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 98.1 to 98.6
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0.6 to 0.9
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.1
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2