MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. CC761S Brass

SAE-AISI 1086 steel belongs to the iron alloys classification, while CC761S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
8.7
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 760 to 870
540
Tensile Strength: Yield (Proof), MPa 480 to 580
340

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1410
910
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 50
27
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
43

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 45
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
41
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
530
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 31
18
Strength to Weight: Bending, points 24 to 26
18
Thermal Diffusivity, mm2/s 14
8.0
Thermal Shock Resistance, points 26 to 30
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
78 to 83
Iron (Fe), % 98.5 to 98.9
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Manganese (Mn), % 0.3 to 0.5
0 to 0.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0
3.0 to 5.0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
8.9 to 19