MakeItFrom.com
Menu (ESC)

SAE-AISI 1086 Steel vs. C95300 Bronze

SAE-AISI 1086 steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1086 steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 260
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11
14 to 25
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 760 to 870
520 to 610
Tensile Strength: Yield (Proof), MPa 480 to 580
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 240
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 50
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 45
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 84
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 890
170 to 420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 31
17 to 21
Strength to Weight: Bending, points 24 to 26
17 to 19
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 26 to 30
19 to 22

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0.8 to 0.93
0
Copper (Cu), % 0
86.5 to 90.2
Iron (Fe), % 98.5 to 98.9
0.8 to 1.5
Manganese (Mn), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Residuals, % 0
0 to 1.0