MakeItFrom.com
Menu (ESC)

SAE-AISI 1108 Steel vs. C82700 Copper

SAE-AISI 1108 steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1108 steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23 to 34
1.8
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 380 to 440
1200
Tensile Strength: Yield (Proof), MPa 220 to 360
1020

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
300
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
21

Otherwise Unclassified Properties

Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.4
12
Embodied Energy, MJ/kg 18
180
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 110
21
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 340
4260
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 13 to 16
38
Strength to Weight: Bending, points 15 to 16
29
Thermal Diffusivity, mm2/s 14
39
Thermal Shock Resistance, points 12 to 14
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0.080 to 0.13
0
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 98.9 to 99.24
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 0.8
0
Nickel (Ni), % 0
1.0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0.080 to 0.13
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5