MakeItFrom.com
Menu (ESC)

SAE-AISI 1137 Steel vs. ASTM Grade LCB Steel

Both SAE-AISI 1137 steel and ASTM grade LCB steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1137 steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 17
27
Fatigue Strength, MPa 250 to 400
200
Poisson's Ratio 0.29
0.29
Reduction in Area, % 34 to 39
40
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 700 to 760
540
Tensile Strength: Yield (Proof), MPa 370 to 650
270

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 48
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 1130
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25 to 27
19
Strength to Weight: Bending, points 22 to 24
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 21 to 23
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.32 to 0.39
0 to 0.3
Iron (Fe), % 97.8 to 98.3
97 to 100
Manganese (Mn), % 1.4 to 1.7
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0.080 to 0.13
0 to 0.045
Residuals, % 0
0 to 1.0