MakeItFrom.com
Menu (ESC)

SAE-AISI 1140 Steel vs. C33200 Brass

SAE-AISI 1140 steel belongs to the iron alloys classification, while C33200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1140 steel and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 18
7.0 to 60
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
40
Shear Strength, MPa 370 to 420
240 to 300
Tensile Strength: Ultimate (UTS), MPa 600 to 700
320 to 520
Tensile Strength: Yield (Proof), MPa 340 to 570
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
28

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 18
44
Embodied Water, L/kg 46
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 93
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 870
60 to 960
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21 to 25
11 to 17
Strength to Weight: Bending, points 20 to 22
13 to 17
Thermal Diffusivity, mm2/s 14
37
Thermal Shock Resistance, points 18 to 21
11 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.37 to 0.44
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 98.4 to 98.9
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.7 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0.080 to 0.13
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4