MakeItFrom.com
Menu (ESC)

SAE-AISI 1141 Steel vs. C96800 Copper

SAE-AISI 1141 steel belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1141 steel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 17
3.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
46
Tensile Strength: Ultimate (UTS), MPa 740 to 810
1010
Tensile Strength: Yield (Proof), MPa 400 to 700
860

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
10
Electrical Conductivity: Equal Weight (Specific), % IACS 12
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
52
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1290
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26 to 29
32
Strength to Weight: Bending, points 23 to 25
25
Thermal Diffusivity, mm2/s 14
15
Thermal Shock Resistance, points 24 to 26
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0.37 to 0.45
0
Copper (Cu), % 0
87.1 to 90.5
Iron (Fe), % 97.7 to 98.2
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 1.4 to 1.7
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Sulfur (S), % 0.080 to 0.13
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5