MakeItFrom.com
Menu (ESC)

SAE-AISI 12L14 Steel vs. C95200 Bronze

SAE-AISI 12L14 steel belongs to the iron alloys classification, while C95200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 12L14 steel and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
120
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 25
29
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 440 to 620
520
Tensile Strength: Yield (Proof), MPa 260 to 460
190

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
50
Embodied Water, L/kg 47
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64 to 93
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 560
170
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 15 to 22
17
Strength to Weight: Bending, points 16 to 20
17
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 14 to 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 97.9 to 98.7
2.5 to 4.0
Lead (Pb), % 0.15 to 0.35
0
Manganese (Mn), % 0.85 to 1.2
0
Phosphorus (P), % 0.040 to 0.090
0
Sulfur (S), % 0.26 to 0.35
0
Residuals, % 0
0 to 1.0