MakeItFrom.com
Menu (ESC)

SAE-AISI 12L14 Steel vs. S40920 Stainless Steel

Both SAE-AISI 12L14 steel and S40920 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 12L14 steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 25
22
Fatigue Strength, MPa 190 to 290
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
75
Shear Strength, MPa 280 to 370
270
Tensile Strength: Ultimate (UTS), MPa 440 to 620
430
Tensile Strength: Yield (Proof), MPa 260 to 460
190

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
26
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 18
28
Embodied Water, L/kg 47
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64 to 93
78
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 560
97
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15 to 22
15
Strength to Weight: Bending, points 16 to 20
16
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 14 to 20
15

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Iron (Fe), % 97.9 to 98.7
85.1 to 89.4
Lead (Pb), % 0.15 to 0.35
0
Manganese (Mn), % 0.85 to 1.2
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0.040 to 0.090
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0.26 to 0.35
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.5