MakeItFrom.com
Menu (ESC)

SAE-AISI 1552 Steel vs. C65500 Bronze

SAE-AISI 1552 steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1552 steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 14
4.0 to 70
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 460 to 510
260 to 440
Tensile Strength: Ultimate (UTS), MPa 760 to 840
360 to 760
Tensile Strength: Yield (Proof), MPa 460 to 650
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
970
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 51
36
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 19
42
Embodied Water, L/kg 47
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 98
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1130
62 to 790
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 27 to 30
12 to 24
Strength to Weight: Bending, points 24 to 25
13 to 21
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 26 to 29
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.47 to 0.55
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 97.9 to 98.3
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.2 to 1.5
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0
2.8 to 3.8
Sulfur (S), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5