MakeItFrom.com
Menu (ESC)

SAE-AISI 1552 Steel vs. C86500 Bronze

SAE-AISI 1552 steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 1552 steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
25
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 760 to 840
530
Tensile Strength: Yield (Proof), MPa 460 to 650
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
120
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
86
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
22
Electrical Conductivity: Equal Weight (Specific), % IACS 12
25

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 47
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 98
110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1130
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 27 to 30
19
Strength to Weight: Bending, points 24 to 25
18
Thermal Diffusivity, mm2/s 14
28
Thermal Shock Resistance, points 26 to 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0.47 to 0.55
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 97.9 to 98.3
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 1.2 to 1.5
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0