MakeItFrom.com
Menu (ESC)

SAE-AISI 4028 Steel vs. N08120 Nickel

SAE-AISI 4028 steel belongs to the iron alloys classification, while N08120 nickel belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4028 steel and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14 to 23
34
Fatigue Strength, MPa 180 to 330
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 310 to 380
470
Tensile Strength: Ultimate (UTS), MPa 490 to 630
700
Tensile Strength: Yield (Proof), MPa 260 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
11
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
45
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.5
7.2
Embodied Energy, MJ/kg 19
100
Embodied Water, L/kg 47
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 95
190
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 720
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17 to 22
24
Strength to Weight: Bending, points 18 to 21
21
Thermal Diffusivity, mm2/s 13
3.0
Thermal Shock Resistance, points 16 to 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.25 to 0.3
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 98.1 to 98.7
21 to 41.4
Manganese (Mn), % 0.7 to 0.9
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.3
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0.035 to 0.050
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5