MakeItFrom.com
Menu (ESC)

SAE-AISI 4028 Steel vs. S39274 Stainless Steel

Both SAE-AISI 4028 steel and S39274 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4028 steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 190
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 14 to 23
17
Fatigue Strength, MPa 180 to 330
380
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 310 to 380
560
Tensile Strength: Ultimate (UTS), MPa 490 to 630
900
Tensile Strength: Yield (Proof), MPa 260 to 520
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
16
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
4.3
Embodied Energy, MJ/kg 19
60
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81 to 95
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 720
940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17 to 22
32
Strength to Weight: Bending, points 18 to 21
26
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 16 to 20
25

Alloy Composition

Carbon (C), % 0.25 to 0.3
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 98.1 to 98.7
57 to 65.6
Manganese (Mn), % 0.7 to 0.9
0 to 1.0
Molybdenum (Mo), % 0.2 to 0.3
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 0.8
Sulfur (S), % 0.035 to 0.050
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5