MakeItFrom.com
Menu (ESC)

SAE-AISI 4140 Steel vs. Grade 9 Titanium

SAE-AISI 4140 steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4140 steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 26
11 to 17
Fatigue Strength, MPa 360 to 650
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Shear Strength, MPa 410 to 660
430 to 580
Tensile Strength: Ultimate (UTS), MPa 690 to 1080
700 to 960
Tensile Strength: Yield (Proof), MPa 590 to 990
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 43
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.5
36
Embodied Energy, MJ/kg 20
580
Embodied Water, L/kg 51
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 180
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 920 to 2590
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 38
43 to 60
Strength to Weight: Bending, points 22 to 30
39 to 48
Thermal Diffusivity, mm2/s 12
3.3
Thermal Shock Resistance, points 20 to 32
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.38 to 0.43
0 to 0.080
Chromium (Cr), % 0.8 to 1.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.8 to 97.8
0 to 0.25
Manganese (Mn), % 0.75 to 1.0
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants