MakeItFrom.com
Menu (ESC)

SAE-AISI 4340 Steel vs. EN AC-47000 Aluminum

SAE-AISI 4340 steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 4340 steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 360
60
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 12 to 22
1.7
Fatigue Strength, MPa 330 to 740
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 690 to 1280
180
Tensile Strength: Yield (Proof), MPa 470 to 1150
97

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 44
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.7
7.7
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 53
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 170
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 3490
65
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 24 to 45
19
Strength to Weight: Bending, points 22 to 33
27
Thermal Diffusivity, mm2/s 12
55
Thermal Shock Resistance, points 20 to 38
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.7 to 0.9
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 95.1 to 96.3
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.6 to 0.8
0.050 to 0.55
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 1.7 to 2.0
0 to 0.3
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
10.5 to 13.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25