MakeItFrom.com
Menu (ESC)

SAE-AISI 4718 Steel vs. C42500 Brass

SAE-AISI 4718 steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4718 steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
2.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 330
220 to 360
Tensile Strength: Ultimate (UTS), MPa 510
310 to 630
Tensile Strength: Yield (Proof), MPa 370
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 420
180
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
30
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
46
Embodied Water, L/kg 51
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 360
64 to 1570
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
9.9 to 20
Strength to Weight: Bending, points 18
12 to 19
Thermal Diffusivity, mm2/s 10
36
Thermal Shock Resistance, points 17
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.16 to 0.21
0
Chromium (Cr), % 0.35 to 0.55
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 96.3 to 97.4
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.7 to 0.9
0
Molybdenum (Mo), % 0.3 to 0.4
0
Nickel (Ni), % 0.9 to 1.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.35
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5