MakeItFrom.com
Menu (ESC)

SAE-AISI 4718 Steel vs. C69300 Brass

SAE-AISI 4718 steel belongs to the iron alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 4718 steel and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 24
8.5 to 15
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
41
Shear Strength, MPa 330
330 to 370
Tensile Strength: Ultimate (UTS), MPa 510
550 to 630
Tensile Strength: Yield (Proof), MPa 370
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
38
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
26
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
45
Embodied Water, L/kg 51
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 360
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
19 to 21
Strength to Weight: Bending, points 18
18 to 20
Thermal Diffusivity, mm2/s 10
12
Thermal Shock Resistance, points 17
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.16 to 0.21
0
Chromium (Cr), % 0.35 to 0.55
0
Copper (Cu), % 0
73 to 77
Iron (Fe), % 96.3 to 97.4
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.7 to 0.9
0 to 0.1
Molybdenum (Mo), % 0.3 to 0.4
0
Nickel (Ni), % 0.9 to 1.2
0 to 0.1
Phosphorus (P), % 0 to 0.035
0.040 to 0.15
Silicon (Si), % 0.15 to 0.35
2.7 to 3.4
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5